3 research outputs found

    NeBula: Team CoSTAR's robotic autonomy solution that won phase II of DARPA Subterranean Challenge

    Get PDF
    This paper presents and discusses algorithms, hardware, and software architecture developed by the TEAM CoSTAR (Collaborative SubTerranean Autonomous Robots), competing in the DARPA Subterranean Challenge. Specifically, it presents the techniques utilized within the Tunnel (2019) and Urban (2020) competitions, where CoSTAR achieved second and first place, respectively. We also discuss CoSTAR¿s demonstrations in Martian-analog surface and subsurface (lava tubes) exploration. The paper introduces our autonomy solution, referred to as NeBula (Networked Belief-aware Perceptual Autonomy). NeBula is an uncertainty-aware framework that aims at enabling resilient and modular autonomy solutions by performing reasoning and decision making in the belief space (space of probability distributions over the robot and world states). We discuss various components of the NeBula framework, including (i) geometric and semantic environment mapping, (ii) a multi-modal positioning system, (iii) traversability analysis and local planning, (iv) global motion planning and exploration behavior, (v) risk-aware mission planning, (vi) networking and decentralized reasoning, and (vii) learning-enabled adaptation. We discuss the performance of NeBula on several robot types (e.g., wheeled, legged, flying), in various environments. We discuss the specific results and lessons learned from fielding this solution in the challenging courses of the DARPA Subterranean Challenge competition.The work is partially supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004), and Defense Advanced Research Projects Agency (DARPA)

    High accumulation of PCDD, PCDF, and PCB congeners in marine mammals from Brazil: a serious PCB problem

    Full text link
    Blubber samples from three delphinid species (false killer whale, Guiana and rough-toothed dolphin), as well as liver samples from franciscana dolphins were analyzed for dioxins and related compounds (DRCs). Samples were collected from 35 cetaceans stranded or incidentally captured in a highly industrialized and urbanized area (Southeast and Southern Brazilian regions). Dioxin-like PCBs accounted for over 83% of the total TEQ for all cetaceans. Non-ortho coplanar PCBs, for franciscanas (82%), and mono-ortho PCBs (up to 80%), for delphinids, constituted the groups of highest contribution to total TEQ. Regarding franciscana dolphins, significant negative correlations were found between total length (TL) and three variables, ΣTEQ-DRCs, ΣTEQ-PCDF and ΣTEQ non-ortho PCB. An increasing efficiency of the detoxifying activity with the growth of the animal may be a plausible explanation for these findings. This hypothesis is reinforced by the significant negative correlation found between TL and PCB126/PCB169 concentration ratio. DRC concentrations (ng/g lipids) varied from 36 to 3006, for franciscana dolphins, as well as from 356 to 30776, for delphinids. The sum of dioxin-like and indicator PCBs varied from 34662 to 279407 ng/g lipids, for Guiana dolphins from Rio de Janeiro state, which are among the highest PCB concentrations ever reported for cetaceans. The high concentrations found in our study raise concern not only on the conservation of Brazilian coastal cetaceans, but also on the possibility of human health problem due to consumption of fish from Brazilian estuaries
    corecore